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Multiple Lines of Defense Strategy for Coastal Restoration

ﬂg@d,l’mtection: Natural and Constructed

Environmental habitat restoration and engineered flood protection are not separate
goals. The Multiple Lines of Defense Strategy proposes that two key elements of the
coast be managed together to sustain the coast: the Lines of Defense and the Target
Habitat Types.

Lines of Defense encompass both natural and constructed features which reduce
hurricane impacts. The effectiveness of engineered flood protection elements are
influenced by the surrounding coastal habitats; therefore, an inclusive list and map of
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Delta Mass Balance Model = balance between sea-level rise + subsidence
- vs deposition of sediment and organic matter sequestration:

ament sy e LtO,D = Q Sf , ( 1+r0 ) / [ C0(0+H ) ]

______ Sea level Paola, C., R.R. Twilley, D. Edmunds, W. Kim, et al. (2011).

———————— "Natural Processes in Delta Restoration: Application to the
Mississippi Delta." Annual Review of Marine Science 3: 67-91.
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Chenier Plain Mississippi Delta

Subsidence rate (mm yr')
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Nienhuis, J.H., Tornqvist, T., Jankowski, K.L., Fernandes,
A.M., Keogh, M.E., 2017. A new subsidence map for coastal
Louisiana. GSA Today 27.

Past and Projected Changes in Global Sea Level
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Modified NHD Basins (Peele, 2015)
2010 50% Isopleth (Braud, 2015)

1932 50% Isopleth (Braud, 2015)
Aqua-1 MODIS 250m True Color (ESL-LSU, NOAA, May 17, 2011)

Peele, 2016
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state took it over and it was supposed to be a model community with a community
center with child care, elderly care. A lot of activities so kids can play in a safe
environment. But all that kind of got shoved in a hole and we can't get it out. It's

very disappointing, actually. I'm very depressed."
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Rumors of outsiders offering to buy Isle de Jean Charles camps has prompted some to
put up signs such as this. Climate change and rising sea levels are the biggest threats
to Isle de Jean Charles. A sign in one resident's front yard offers their thoughts on the

matter.

SCOTT CLAUSE/USA TODAY NETWORK
“CLIMATE COLLISION

As Gulf swallows/Louisiana island,
displaced tribe fears the future

N
Andrew J. Yawn, The‘American South
Updated 9:35 a.m. CST Feb. 27, 2020
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Fig. 2 Topography and bathymetry: 1890,
1930, 2010, and 2110
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157(3), 445-468
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Maximum of maximum
(MOM) water surface
elevations at Lafitte,
Louisiana. Gray boxes:
average cost per person in
2010 USD for protection
from Hurricane Isaac
storm surge for each
storm surge model mesh
year 1930-2110. GMSL
rise of 2 mm/year 1930-
2010 and GMSL rise of 5.1
mm/year 2010-2110
included



Mean sea level

Approximate costs per person are also calculated
(2010 USD):

$49,500 (1930),
$41,400 (1970),
$37,500 (1990),
$181,600 (2010),
$223,600 (2030),
$247,800 (2050),
$269,900 (2070),
$290,100 (2090), and
$309,800 (2110).

17 Storm tide

2#. Normal high tide

The Gulf of Mexico (GOM) migrated 7.4 km
inland within the Louisiana Barataria coastal
basin between 1973 and 2010.

For each person in Lafitte, flood defense costs
increased approximately (2010 USD) $19,000 per
person per kilometer inland migration of the
GOM from 1973 to 2010.

The methodology developed in this case study
effectively connects wetland loss with increased
flood defense costs and can be applied to
communities with similar challenges.
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Simulation results for 1850 and
1890 demonstrate minimal change
in storm surge characteristics
along the Louisiana coast.

Mean maximums of maximums (MOM)
water surface elevations difference (m,
NAVD88) for 14 hurricanes simulated as
follows:
YEARS

a) 1850-1890,
b) 1890-1930,
c) 1930-2010,
d) 2010-2110,
e) 1850-2110.

Sea Level Rise
0.5 mm/yr
1.0 mm/yr
2.0 mm/yr
5.1 mm/yr
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A mean maximum storm surge
height increase of 0.26 m from
1930 to 2010 is quantified within
the sediment-abundant
Atchafalaya-Vermilion coastal
basin, while increases of 0.34 m
and 0.41 m are quantified within
sediment-starved Terrebonne and
Barataria, respectively.

Mean maximums of maximums (MOM) water
surface elevations difference (m, NAVD88) for
14 hurricanes simulated as follows:

YEARS Sea Level Rise
a) 1850-1890, 0.5 mm/yr
b) 1890-1930, 1.0 mm/yr
c) 1930-2010, 2.0 mm/yr
d) 2010-2110, 5.1 mm/yr

e) 1850-2110.
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Future mean maximum storm
surge heights increase across
these three coastal basins by 0.67
m, 0.55 m, and 0.75 m, indicating
negligible differences from 2010 to
2110, regardless of sediment
availability.

Mean maximums of maximums (MOM)
water surface elevations difference (m,

NAVD88) for 14 hurricanes simulated as
follows:

YEARS

a) 1850-1890,
b) 1890-1930,
c) 1930-2010,

2010-2110,
1850-2110.

d)
e)

Sea Level Rise
0.5 mm/yr
1.0 mm/yr
2.0 mm/yr
5.1 mm/yr




KEY
Modified NHD Basins (Peele, 2015)
2010 50% Isopleth (Braud, 2015)
== 1932 50% Isopleth (Braud, 2015)
Aqua-1 MODIS 250m True Color (ESL-LSU, NOAA, May 17, 2011)

1. A mean maximum storm surge height increase of 0.26 m from 1930 to 2010 is quantified
within the sediment-abundant Atchafalaya-Vermilion coastal basin, while increases of 0.34
m and 0.41 m are quantified within sediment-starved Terrebonne and Barataria,
respectively.

2. Future mean maximum storm surge heights increase across these three coastal basins by
0.67 m, 0.55 m, and 0.75 m, indicating negligible differences from 2010 to 2110, regardless
of sediment availability.

3. Results indicate that past changes in the Louisiana coastal landscape and storm surge were
a consequence of local land and river management decisions while future changes are
dominated by relative (subsidence and eustatic) sea level rise.
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Sediment supply

N

Delta top

Sea level

Ltop = er (1+ )/[CO(O'+H)] Delta Mass Balance Model =

balance between sea-level rise +
L,,, the area of the delta top where : subsidence vs deposition of

Q, total volumetric sediment supply, sediment and organic matter
f, the fraction retained in the delta top, sequestration

and
] Paola, C., R.R. Twilley, D. Edmunds,
rory the rate of storage of organic matter  w. im, et al. (2011). "Natural

in soil of delta top, Processes in Delta Restoration:
. . Application to the Mississippi Delta."
H is eustatic sea |EVE|, Annual Review of Marine Science 3:

o spatially averaged subsidence rate 67-91.
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wop = Quf, (14r0) / [Colo+H)]
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