A paradigm shift: Rethinking Phragmites (and Phragmites management) in the context of ecosystem resilience

Thomas J. Mozdzer, Ph.D.

Associate Professor of Biology, Bryn Mawr College Research Associate, Smithsonian Environmental Research Center

Ecosystem Services Comparison

Ecosystem Service	Phragmites		Native marsh	Citations
Wave attenuation/ Shoreline stabilization	1	=		Leonard et al 2002, Theuerkauf et al 2017
Vertical accretion		>		Windham and Lathrop 1999, Rooth et al. 2003, Mozdzer in prep
Nitrogen /metal immobilization		>		Windham & Ehrenfeld 2003, Windham et al 2003, Mozdzer et al 2013, Mozdzer et al in prep
Carbon sequestration		>		Caplan et al 2015, Schäfer et al 2014, Duman & Schäfer 2017
Habitat "quality"		≤		Meyerson et al 2010, Dibble et al 2013, Kiviat 2013
Fish/Benthic habitat		≤		Able & Hagan 2000, Hanson et al 2002, Meyer et al 2001, Posey et al 2003, Weinstein et al 2000, Weise et al 2002, Weis 2008,
Waterfowl habitat	<i>2</i> 5. /	<		Cross and Fleming 1989
Migratory/bird habitat		≤		Benoit & Askins 1999, Kiviat 2013
Biodiversity		≤		Bertness et al 2003, Chambers et al 1997, Kiviat 2013

Note: Ecosystems service comparisons are complex and difficult to assign benefits/losses

Phragmites is more productive and fixes up to 3 times more carbon than native plants under current & near-future conditions

Phragmites builds more elevation than native plants at GCREW N addition increases Phragmites productivity & elevation gain Native communities are NOT keeping pace with RSLR

Data available upon request

Invited Review

SPECIAL ISSUE: Phragmites australis in North America and Europe

Phragmites australis management in the United States: 40 years of methods and outcomes

Eric L. G. Hazelton 1,2*1, Thomas J. Mozdzer^{2,3,1}, David M. Burdick⁴, Karin M. Kettenring^{1,2} and Dennis F. Whigham²

Figure 1. Duration of studies included in review. One study conducted a single survey and is denoted with the time = 0 bar.

Lessons learned from 40 years of *Phragmites* management

- Studies do not last long enough
- Herbicides are most common approach & are effective at removing *Phragmites*
- However, we do not typically track recovery well

Invited Review

SPECIAL ISSUE: Phragmites australis in North America and Europe

Phragmites australis management in the United States: 40 years of methods and outcomes

Eric L. G. Hazelton^{1,2*†}, Thomas J. Mozdzer^{2,3,†}, David M. Burdick⁴, Karin M. Kettenring^{1,2} and

Methods used

Figure 2. Management methods used in reviewed articles. Methods used in combination are counted individually.

Lessons learned from 40 years of Phragmites management

 Wetlands/watersheds should be prioritized to identify ecosystems that would benefit most from management and where the negative effects of management would be minimal

Large Scale Phragmites Removal Experiment: Before

Figure 3.1. Map of sampling sites on the Western Shore of Chesapeake Bay.

Nanjemoy River removal site. Photo: Marine Ecology lab SERC, Figure: Hazelton Dissertation 2018

Large Scale Phragmites Removal Experiment: After Lessons learned (Hazelton 2018)

 Large monocultures may not be able to recover or return to native state

37.5% sites never recovered

Nanjemoy River removal site. Credits: Eric Hazelton

Phragmites herbivory is resulting in further destabilization of the Gulf Coast

Die off is exposing gas and oil infrastructure that can lead to increased risks of spills

Loss of *Phragmites* can is reshaping and clogging shipping channels

Source: https://www.nytimes.com/interactive/2018/02/24/us/louisiana-wetlands-insects.html

Phragmites Biocontrol

- Proposed biocontrol agents are **not** host-specific at the lineage level
 - May adversely affect native lineages
- First instar larvae survived on the foundation species *Spartina alterniflora and S. cynosuroides*
- Biocontrol ignores decades of science and implementation of adaptive management because it can NEVER be removed once released.
- Limits our management toolbox if we ever want to use *Phragmites* to maintain existing marshes that would otherwise drown to RSLR

Archanara geminipuncta

Archanara neurica

Ecosystem Resilience & Management

Summary

- Phragmites-dominated wetlands provide many comparable or superior ecosystem services
- NOT advocating for a cessation of *Phragmites* management but a reevaluation of where and when we
 manage with respect to maintaining ecosystem resilience
 acknowledging potential benefits of *Phragmites*
- Acknowledge that management may destabilize wetlands lowering marsh resilience

Final thoughts

- Very interested in developing partnerships with managers and policy makers to evaluate how management practices influence ecosystem resilience
- If Phragmites is superior in terms of keeping pace with RSLR, is there a scenario when management should prioritize maintaining marsh integrity over maintaining native species/habitat?
- Can Phragmites-dominated wetlands be considered a viable alternate stable state in terms of management & policy goals?

Twitter: @tjmozdzer

Facebook: MozdzerEcologyLab

Email: tmozdzer@brynmawr.edu