

Thin Layer Placement as a Tool to Address Impacts to Coastal Marsh Habitat due to Sea Level Rise – Case Studies and Future Considerations

Prepared for: Marsh Resilience Summit

Prepared by: Sam Whitin – EA Engineering, Science, & Technology, Inc. PBC

February 06, 2019

WHAT IS THIN LAYER PLACEMENT?

Aliases

- O Beneficial Reuse
- Sediment Enrichment
- Thin Layer Deposition
- Marsh Enhancement

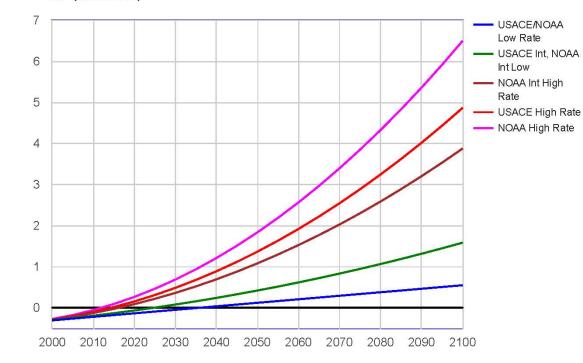
Who?

USACE, USFWS, DoD

State of NJ

TNC (Rhode Island)

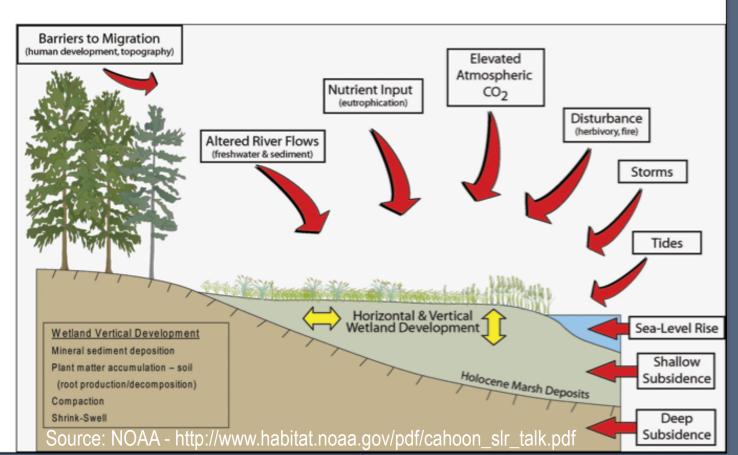
Initial Results


Site Specific Success
 Future Re-Applications
 What are our choices?

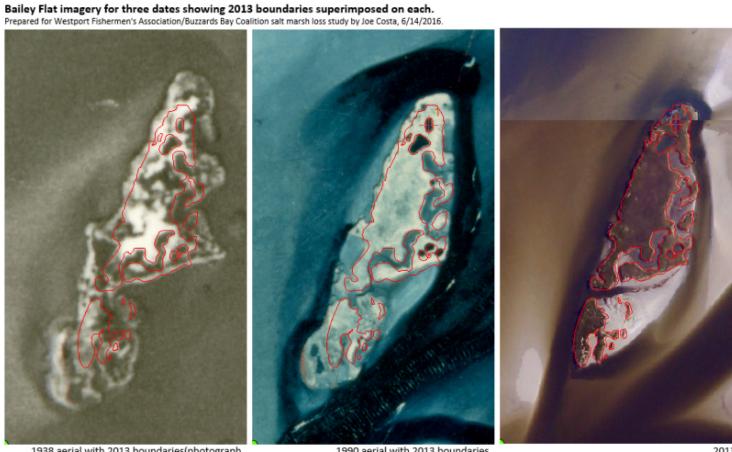
Challenges

Permitting
Subsidence
What is "thin"?
Bulking and consolidation
Sediment loss
How does SLR fit in?

Failure Mechanisms Tied to Sea Level Rise


Relative Sea Level Change Projections - Gauge: 8447930, Woods Hole, MA (05/01/2014)

Failure Mechanisms Tied to Sea Level Rise


Coastal Wetlands Respond Dynamically to Environmental Change

Salt marshes rely on a careful balance between multiple environmental factors

- Hydrologic Regime/elevation within tides range
- Salinity
- Nutrients
- Sediment Loading
- Surrounding Ecology
- A Host of Other Factors!

Failure Mechanisms Tied to Sea Level Rise

1938 aerial with 2013 boundaries(photograph taken 3 months after the hurricane of 1938) 1990 aerial with 2013 boundaries

Source: Buzzards Bay Coalition: http://www.savebuzzardsbay.org/news/scientists-work-to-solve-westport-rivers-eroding-salt-marsh-mystery/

Toolbox of Restoration Techniques

Adding Thin Layer Placement to the Coastal Resiliency Toolbox

• Technique is certainly not applicable in all restoration scenarios

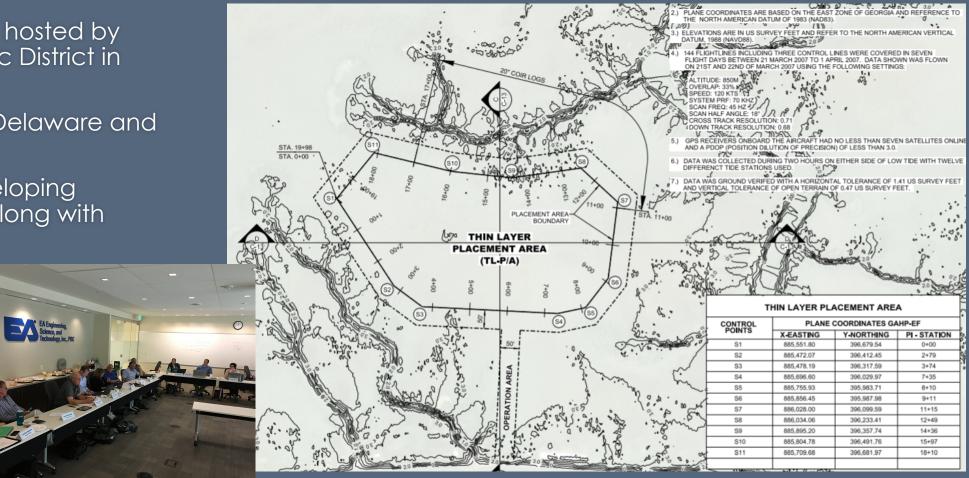
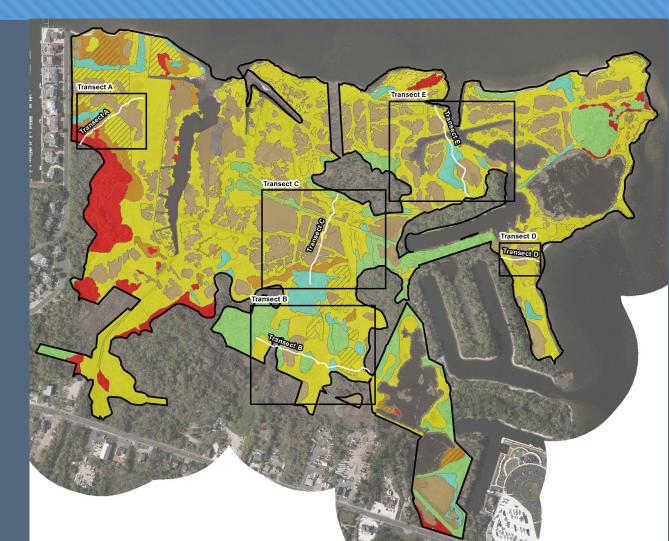
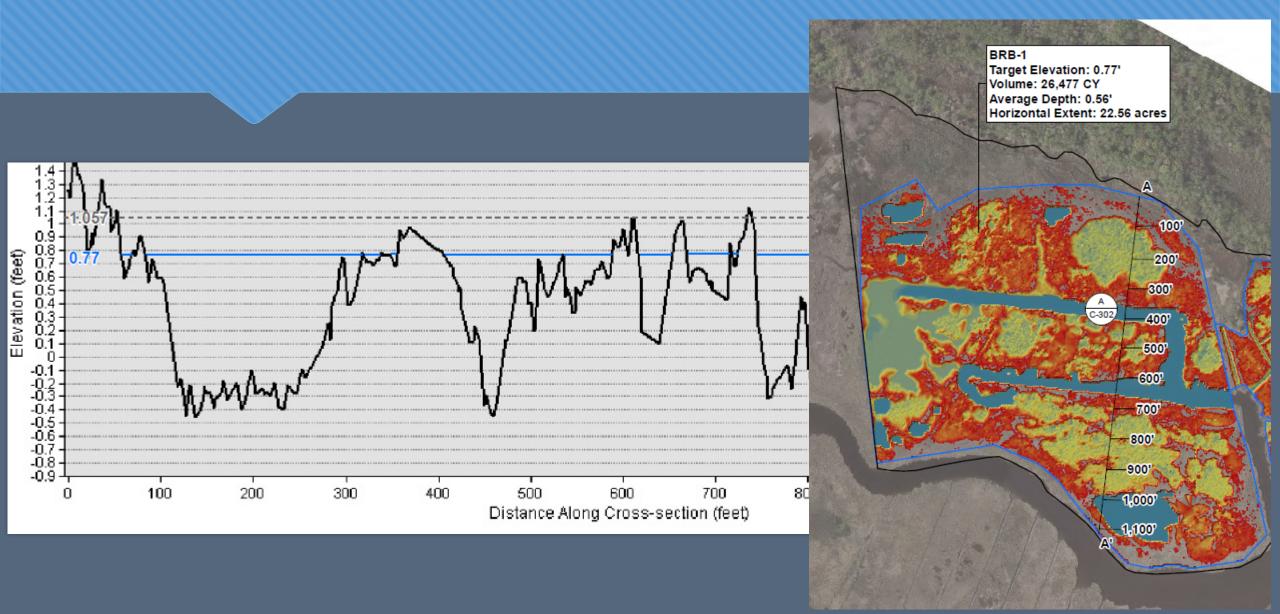

 Initial targets have been areas where <u>marsh</u> <u>migration</u> is not possible.

Photo source: http://www.seagrant.umaine.edu/research/projects/critical-leading-edge

Building and Transferring Knowledge

- Regional Workshops hosted by USACE South Atlantic District in 2017
- Local workshops in Delaware and Maryland
- USACE ERDC is developing guidance manual along with practitioners


How to Execute Thin Layer Placement? ESTABLISHING A BIOLOGICAL TARGET ELEVATION INITIAL VEGETATION & ELEVATION SURVEYS


- Traditional aerial photointerpretation using infrared photography and LiDAR elevations
- Spatial and Temporal Scale and budget greatly influence approach
- Elevation and vegetation field-truthing is critical

ESTABLISHING A BIOLOGICAL TARGET ELEVATION

- Verify vegetated marsh zones along with verification of local tidal datum
- Stakeholders to choose target biological elevation
- LiDAR and imagery is critical, and time/budget allocated for ground truthing should be a considerable part of the effort

ESTABLISHING A BIOLOGICAL TARGET ELEVATION

Establish Future Marsh Scenarios

		Brick 1 Transducer ⁽¹⁾			
Habitat Type	Min ⁽¹⁾	Max ⁽¹⁾	Average ^(1,2)	Acreage	
MUDF	-0.94	0.59	-0.17	33.69	
STRESSED LSM	-0.06	0.14	0.04	4.30	MLW 0.110
LSM	-0.16	0.58	0.17	57.58	
LHSM	0.29	0.75	0.52	0.00	
STRESSED HSM	(3)	(3)	(3)	1.48	MHW 0.600
HSM	0.53	0.79	0.66	3.61	
TPM	0.65	1.25	1.01	6 .55	
SCRB	0.48	2.53	1.47	4.67	
SCRB/TPM	0.65	0.94	(3)	(4)	
UW	(3)	(3)	(3)	13.10	
OPEN WATER	(3)	(3)	(3)	4.91	
BH	(3)	(3)	(3)	0.11	

1.	Establish existing marsh elevations
2 .	Establish local sea level rise
	predictions

3.	Predic	ct new	healthy	r marsh e	levations
----	--------	--------	---------	-----------	-----------

Projected Year	USACE Low/NOAA Low	USACE Intermediate/NOAA Intermediate Low	NOAA Intermediate High	USACE High	NOAA High		
	(ft relative to NAVD88)						
2015	0.5	0.55		<u> </u>	1 -, ,		
2020	0.57	0.64		2015 Elevation	2020 Elevation ¹	2025 Elevation ¹	2030 Elevation ¹
2025	0.63	0.73		-0.08 ²	-0.04 ²	0.062	0.162
2030	0.7	0.83	El. Of LSM (ft)	0.17	0.21	0.30	0.40
2035	0.76	0.93	LI. OI LOW (II)				I
2040	0.83	1.03		0.42	0.46	0.55	0.65
2045	0.89	1.14	El. Of HSM (ft)	0.66	0.70	0.79	0.89
2050	0.96	1.26		0.84	0.88	0.97	1.07
2055	1.03	1.38	E1. Of TPM (ft) ²	1.01	1.05	1.14	1.24
2060	1.09	1.5	Li. Of Him (iii)				
2065	1.16	1.63		1.24	1.48	1.82	2.09
			El. Of SCRB (ft)	1.47	1.90	2.50	2.93

¹ Elevations of vegetation communities in the future were calculated by adding "USACE Intermediate Level" predicted rates of sea level rise equal to ~0.018' per year ² Elevations of the lower limit of the LSM range were not directly measured in the field, but were extrapolated from the elevation differences between vegetation communities

MULTI CRITERIA DECISION ANALYSIS (MCDA): APPLICATION TO THIN LAYER PLACEMENT

 In consideration of sea-level rise – how do you not end up upland or undesirable habitat

• How are habitat values and decisions made for the long term?

	Interests and Sub- Interests	Year 0 SLR Design	Year 5 SLR Design	Year 10 SLR Design	Year 15 SLR Design
Year	0				
	Mudflat	5	5	5	1
	Low Salt Marsh	1	1	5	2
	High Salt Marsh	5	5	2	1
	Phragmites	1	5	5	5
	Upland	5	5	5	5
Contruction Cost					
		3	3	3	3
Schedule Impacts					
		5	5	5	5

THIN LAYER PLACEMENT METHODS

 Target application of <6'' (typ.) of sediment can be used in order to restore marsh surface

• Typically coupled with a navigational channel dredging project

 Sediment application technique can be similar to methods utilized for remediation/capping efforts

 High pressure and low pressure dispersal systems have been utilized, but approach still seems to be project specific

Initial Challenges

- When resiliency is the driver (and not nav. channel improvements) data collection and design/engineering is very different than traditional dredge material disposal efforts:
 - Building Sea-level rise into the equation becomes problematic especially in microtidal areas
 - Typically there is much more dredge material to be disposed of than is needed for restoration
- Dispersal is problematic:
 - Existing marsh impacts (vegetation and peat/soils)
 - Grains size sorting leading to consolidated/hard pack surface
 - The larger the marsh the greater the impact to adjacent marsh surface.

PEPPER CREEK (2013 ~ \$125,000) DAGSBORO, DE PROJECT PARTNERS: CENTER FOR ISLAND BAYS & DNREC'S DIVISION OF WATERSHED STEWARDSHIP

- Restore 25 AC area of tidal marsh
- Dredge material hydraulically dredged and pumped to a barge for aerial application
- Approximately 35,000 CY of dredged material was sprayed on the marsh surface at a thickness ranging from 1 to 6 inches
- Marsh is showing signs of recovery, but lessons learned providing valuable tools for future efforts.

Photo Credit: Bart Wilson - USFWS

Prime Hook NWR ~ (2014-2016 \$38M) Milton, DE

- 4,000 acre marsh restoration
- O 20 miles of channel dredging
- Doesn't fit traditional TLP definition, but project is heavily studied, which will help us better understand impact of thin layering impacts

Blackwater National Wildlife Refuge Milton, DE

• More details to come!

STONE HARBOR, AVALON, AND FORTESCUE - NJ PROJECT PARTNERS: USACE, STATE OF NJ, TNC

O What

- <u>Stone Harbor</u>: ~7,000 CY of reclaimed material over 0.5AC
- <u>Avalon</u>: ~95,000 CY of sediment using aerial and ground applications
- Fortescue (initial phase): ~15,000 CY of sediment to restore 10 AC of degraded salt marsh and 3 AC of beach

Outcome

- Still in long term monitoring, but initial vegetation response is somewhat positive;
- Lessons learned in regard to elevation control and more lessons learned regarding containment.

Photo Credit: Joel Pecchioli, NJDEP (Avalon)

STONE HARBOR STONE HARBOR, NJ

~7,000 CY of reclaimed material over 0.5AC
Dredged material was pumped 1.5 miles
Dredge material was 96% fine sand
Created Black Skimmer habitat and still monitoring the transition back to healthy salt marsh

Photo Credit: NJ DEP and The Gazette of Middle Township (Stone Harbor)

AVALON (~ \$1,500,000) AVALON, NJ

- Developed biological target elevation
- Thickness ranged from 0.5 to 20 inches in pools
- Dredge material was 16% clay, 50% silt, and 34% fine sand
- Bulking, consolidation, and settlement rates indicate that that preference would be to model first, if possible

Photo Credit: Joel Pecchioli, NJDEP (Avalon

FORTESCUE (~ \$3,800,000) FORTESCUE, NJ

- Thickness ranged from 0 to 48 inches in pools
- 33,000 CY material dredged (greater volume than was dispersed via thin-layer deposition)

Photo Credit: Phillip Tomlinson South Jersey Times (Fortescue)

SACHUEST POINT NATIONAL WILDLIFE REFUGE (2016 ~ \$644,000) MIDDLETOWN, RI PROJECT PARTNERS: U.S. FISH & WILDLIFE SERVICE & THE NATURE CONSERVANCY

• 11,000 CY of dredged material was applied to 11 AC

 Material was dredged hydraulically and placed on the marsh platform to dry out; placement occurred by means of spreading and grading the material with a lightweight amphibious excavator

 Encouraging results with deposition thickness from 1 to 12 inches across the marsh surface

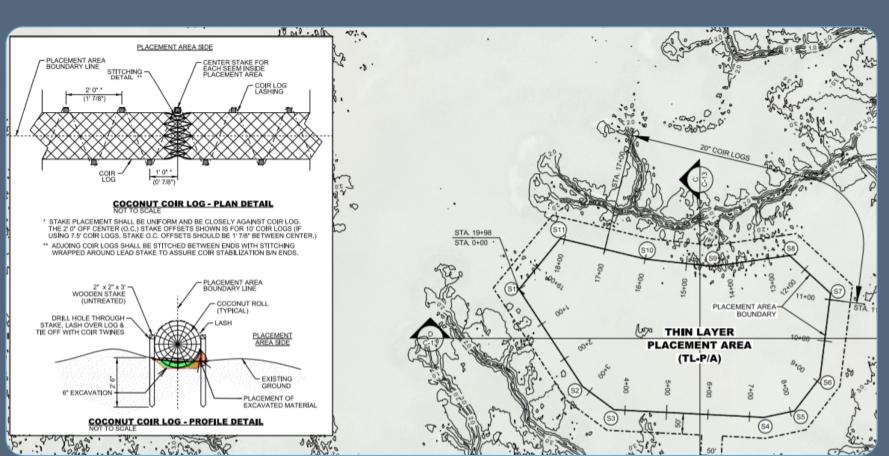
Photo Credit: Anne Post/USFWS

NINIGRET POND SALT MARSH RESTORATION & ENHANCEMENT PROJECT NARRAGANSETT, RI (2016/2017) PROJECT PARTNERS: RHODE ISLAND CRMC, USFWS, SAVE THE BAY

• 25 AC of degraded salt marsh

- 60,000 CY of dredge material was split in half between beach nourishment and marsh restoration
- \$1.4M construction effort

Photo Credit: J. F. Brennan


JEKYLL ISLAND NAVIGATIONAL AND HABITAT IMPROVEMENT PROJECTS Project Partners: USACE Jacksonville District and State of Georgia (2019)

- \$12M total bid for navigational improvements and thin layering project
- Awarded January 2019 and includes 225,000 yd³ of dredging

ATLANTIC INTRACOASTAL WATERWAY, GA & SC JEKYLL CREEK BENEFICIAL USE OF DREDGED MATERIAL PILOT PROJECT AND SELECTIVE SITE MAINTENANCE DREDGING FY18

Future Considerations

• Applicability of thin layer

- Is it appropriate in general? What about for your site?
- Implications of inaction

O Design considerations

- Need more investigations regarding approach to estimating consolidation and grain size sorting
- Elevation data is critical over large areas minor deviations from true elevation can result in big cost/schedule impacts
- Containment concerns and how best to deploy and remove
- Permitting and especially Essential Fish Habitat and USACE concerns should be fully vetted
- Is there a sediment source near-bye and is the material usable?
- To plant or not to plant?

Future Considerations - continued

- Constructability
 - Constructability concerns need to be incorporated into initial project assessment phases
 - Placement methods and site access issues can be deal breakers, so keep them in mind (especially on larger sites)
 - Concerns related to construction contracting still being flushed out (i.e. impacts to adjacent marsh surfaces)
- Sea level rise scenarios and the potential for the need for reapplication during dredge maintenance cycles
- As always Adaptive Management is essential to successful completion
- USACE is developing guidance manuals and there is an immediate need for thin layer practitioners to keep up with data sharing!

USACE Engineer Research Development Center – Guidance Manual

- Draft thin layer guidance manual is in development and will hopefully be released for public comment later in 2019
- Being developed with input from numerous federal, state, local, private, and non-profit entities
- Will provide engineering and construction guidance for projects where thin layer is appropriate
- Manual will cover an expanded definition of thin layer placement (i.e. inclusive of open water placement of thin layers of sediment)

Thank you and questions

Sam Whitin EA Engineering, Science, and Technology 401-465-2549 swhitin@eaest.com