Agroecosystems in transition: sea level rise and saltwater intrusion alter biogeochemical cycling in coastal farmlands

Kate Tully¹, Dani Weissman¹, Jarrod Miller², Thomas Jordan³

¹University of Maryland, College Park, MD ²University of Delaware, Georgetown, DE ³Smithsonian Environmental Research Center, Edgewater, MD kltully@umd.edu | www.agroecolab.org | @AgroEcoKate

Drivers of saltwater intrusion

Tully et al. in press Bioscience

Saltwater intrusion in uplands

Coastal flooding encroaches on farmland

Saltwater is complex

Fresh

Ionic Strength Base Cations (Na⁺, K⁺, Ca²⁺, Mg²⁺) Alkalinity [SO₄²⁻]

Salt

Saltwater can mobilize N

Fresh

Nitrogen

Ionic Strength Base Cations (Na⁺, K⁺, Ca²⁺, Mg²⁺) Alkalinity [SO₄²⁻]

Salt

Saltwater can mobilize P

Fresh

Phosphorus

Ionic Strength Base Cations (Na⁺, K⁺, Ca²⁺, Mg²⁺) Alkalinity [SO₄²⁻]

Agriculture impacts water quality in the Chesapeake Bay

troole

45%

38%

Phosphorus

60%

Some fields may be hotspots

Research Questions: Transitions

1. Effect of saltwater intrusion on water chemistry in transitioning ecosystems?

2. Effect of saltwater intrusion on soil chemistry in transitioning fields?

Study design: ecosystems in transition

Similar conductivity in marshes & intruded fields (that means these are SALTY fields!)

2 mS/cm ≈ 1 ppt @ 25°C

Similar conductivity in marshes & intruded fields (that means these are SALTY fields!)

2 mS/cm ≈ 1 ppt @ 25°C

Results: ecosystems in transition

High phosphate levels in intruded fields, ditches, and marshes

0.03 mg/L = EPA stream eutrophication limit

Results: ecosystems in transition

High ammonium levels in marshes

Study design: fields in transition

corn field

soy field

sorghum field

Study design: fields in transition

Study design: fields in transition

Soil conductivity decreases from ditch bank

Soil conductivity decreases from field edge Evidence of sulfate reduction

Tully et al. 2019 Biogeochemistry

Results: fields in transition **Total soil iron similar across transitions**

Results: fields in transition Non-crystalline iron increases toward the ditch

Correlation between organics and non-crystalline metal complexes

Correlation between organics and non-crystalline metal complexes

Tully et al. 2019 Biogeochemistry

Soil P pools largest at field edges - poised for loss

Farmer responses to saltwater intrusion

In sum...

Sea-level rise leads to saltwater intrusion
Salts are moving into agroecosystems
N and P are moving from fields to marshes
More non-crystalline Fe close to ditches
Potential C stabilization on field edges

kltully@umd.edu @AgroEcoKate www.agroecolab.org

Thank you!

Collaborators Becky Epanchin-Niell Keryn Gedan Jarrod Miller

Logistical Support

- Farmer partners
- Larry Fykes (MD Soil Cons. District)

